Effective Accuracy of Satellite Predicted Irradiance

Richard Perez, Antoine Zelenka and David Renné

Estimates of hourly global irradiance based upon geostationary satellite data with a ground resolution of a few kilometers reproduce ground-measured value with a relative Root Mean Square Error (RMSE) of typically 20-25%. However, this "observed" RMSE does not represent the intrinsic accuracy of satellite data-to-irradiance conversion models. Indeed, much of this RMSE results from the difference between a time integrated, point-specific measurement—the ground-measured irradiance—and a time specific, spatially (pixel-wide) integrated measurement—the satellite-derived irradiance.

We present quantitative estimates of the respective contribution of each component—intrinsic satellite model error, point-pixel discrepancy and ground measurement inaccuracy—amounting to the observed "conventional" RMSE. This presentation is made from the standpoint of a user having to rely on site/time specific data. From such a standpoint, the intrinsic or "effective" RMSE of satellite-derived irradiance is estimated to be of the order of 12%.

EFFECTIVE ACCURACY OF SATELLITE-DERIVED IRRADIANCE

Richard Perez Antoine Zelenka Dave Renné

Presentation: Effective Accuracy of Satellite-Derived Irradiance by R. Perez, A. Zelenka, and D. Renne

Presentation: Effective Accuracy of Satellite-Derived Irradiance by R. Perez, A. Zelenka, and D. Renne

EXPERIMENTAL DETERMINATION OF EFFECTIVE ACCURACY

- CLOUD FRACTAL SELF SIMILARITY ASSUMPTION
- LOCALLY HOMOGENEOUS CONDITIONS

Perez et al., ASRC

Fractal self similarity suggests that:

Irradiance observed by at some point within a pixel will be found at a larger spatial scale in a neighboring pixel

Hence an experimental measure of effective accuracy is

RMSE _{eff} = $(\Sigma \text{ (station - pixel*)})^{1/2}$

where pixel* = any 1 of 9 pixels, whichever happens to be most

Perez et al., ASRC accurate at a any given point in time

Experimental determination of Effective Accuracy LOCALLY HOMOGENEOUS CONDITIONS

RMSE $_{\rm eff} = (\ \Sigma\ ({\rm station\ -\ pixel^*}))^{1/2}$

Perez et al., ASRC Where pixet = Cu

where pixel* = Closest pixel, but only considered when neighbors are within $\pm 5\%$

EXPERIMENTAL DETERMINATION OF EFFECTIVE ACCURACY

- CLOUD FRACTAL SELF SIMILARITY ASSUMPTION
- LOCALLY HOMOGENEOUS CONDITIONS

ground truth site	"classical" closest pixel RMSE	self-similarity effective RMSE	homogeneous effective RMSE
New Paltz (NY)	22%	11%	14%
waltham (Mass)	21%	12%	14%
Mc Arthur (NY-LI)	20%	10%	13%
Albany	23%	11%	17%
All sites	22%	11%	15%

Perez et al., ASRC

Presentation: Effective Accuracy of Satellite-Derived Irradiance by R. Perez, A. Zelenka, and D. Renne

Presentation: Effective Accuracy of Satellite-Derived Irradiance by R. Perez, A. Zelenka, and D. Renne

CONCLUSIONS

Predicting site-time specific irradiance

- Although point-specific precision may never be better than 20-25%
- ② Pixel-wide precision (5X5 km) is more likely of the order of 10-15%
 - ∠Impact on ground truth investigations
- ◆ Conclusion is reached using very Perez et al., ASRC simple model